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Abstract 

Mathematical consideration of the course of titration of a weak acid with a strong base shows that buffer index 
versus pH curve, n = f(pH), should contain two minima and one maximum under certain conditions, which coincides 
with the three inflection points of the pH versus fraction titrated, pH = f(T), curve. Ionic strength is assumed to be 
constant in this treatment, and the effect of dilution is neglected. The theory developed is applied to the acetic 
acid/sodium acetate and boric acid/sodium borate systems. The central maximum in the n = f(pH) does not coincides 
with the pK a because of the self ionization equilibria of water. The end point inflection (when occurs) at which the 
slope of the pH = f(T) curve is greater (minimum buffer capacity) precedes the equivalence point. 

Keywords: Buffer index curve; Titration curve; Monoprotic acid 

I. Introduction 

The ability of  a solution to resist attempts to 
change its pH is called the buffer capacity, the 
buffering effectiveness being expressed numerically 
as a buffer index (capacity) which is defined (Van 
Slyke, 1922) as the number  of  equivalents of  
strong base (eq l i ter-1) needed to change the pH 
value by 1 unit 

dCB dCA 
- - -  - ( 1 )  

dpH dpH 

Buffer solutions are used since the beginning of  
the century (Rideal, 1940), and buffer index calcu- 
lations have been discussed in many studies since 
the publication in 1922 of the classical paper  due 
to Van Slyke. In particular, a great deal of  atten- 

tion has been paid to this topic in textbooks. 
Though any aspect of  buffer and titration theory 
has been treated in great detail by Ricci, 1952, the 
presentation of the matter  in a more comprehensi- 
ble form is still an open question, as indicated 
recently by Rilbe (Rilbe, 1993; Rilbe, 1994. Buffer 
solutions have value for natural (Dickson, 1993; 
Millero et al., 1993) and technical systems (Gal- 
ster, 1991), and the approximate calculation of  a 
buffer value is also of  practical importance for the 
design of new buffer solutions. 

This paper  is devoted to the buffer index of a 
monoprot ic  acid system and is intended to occupy 
the middle ground between oversimplification and 
a rigorous and complete treatment which requires 
consideration of both dilution and ionic strength 
effects. 
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2. 2. Basic equations 

Let us consider the strong base BOH added to 
a weak acid HA. It is assumed that the total 
volume of the solution remains constant through- 
out, that is, we suppose that the titrant is much 
more concentrated than the titrated solution. Us- 
ing IH+[ to represent total hydronium ion con- 
centration, we have the usual equation 

K,-IHIH~ A]l (2) 

A neutral salt is assumed to be present in 
sufficient amount to keep activity coefficient con- 
stants hence these coefficients are not explicitly 
included in Eqn. (1), and Ka is a concentration or 
stoichiometry (Rossotti, 1978) constant. These ap- 
proximations are typically encountered in most 
analytical textbooks (Connors, 1982). 

Suppose CA moles of HA were originally dis- 
solved in each liter of solution. Then a mass 
balance gives 

cA = IHA[+ IA d (3) 

After addition of BOH, the electroneutrality rule 
must hold 

IB+I+IH+I=IA I+IOH [ (4) 

Taking into account that C a =  IB +l, by 
combining Eqns. (2) and (3), on rearranging Eqn. 
(4), we get 

CB - CA Kw 
l + [ g + l  [g+[-~ [g+l (5) 

K. 
where Kw is the stoichiometric ion product of 
water 

K.,=IH+IIOH I (6) 
By differentiating Eqn. (5) with respect to pH 

we obtain the buffer index 

dC~ dC,~ dlI-I+l 
7~ dpH d[g+ l dpH 

/ cAIH+I ) 
= In 10t ( 1 (7) 

which has the dimension of concentration. Its 
follows from Eqn. (7) that the total buffer index is 
equal to the sum of the buffer index of the indi- 
vidual species 

775 = 7~t1 A ~- 7~fl 21- 7~OH (8)  

The first term on the right of Eqn. (7) describes 
the behaviour of HA, whereas the second and 
third term describes the behaviour of the titrated 
medium. The buffer index is thus additively com- 
posed of two parts, that due to water 7"CH2 0 = TC H -}- 
~OH being important at very low and very high 
pH values; it does not influence titration curves 
near the neutral point, but it does have around 
low and high pKa values. Solutions of strong 
acids and bases behaves as buffers, though their 
pH values fall outside the usual range of interest 
in physiology and chemistry. Since zc for a weak 
acid is both pH and concentration dependent, it 
can vary by several order of magnitude. Fig. 1 
shows the theoretical buffer index curves for a 
fixed value of CA = 0.1 and varying values of pK~, 
calculated by use of Eqn. (7). 

3. Buffer index versus titration curves 

However, in potentiometric titrations, the pH is 
usually plotted against a parameter related to the 
amount of acid titrated, such as the titration 
fraction, T 

0.100 

0.075 

0.050 

0.025 

0.000 ' / 
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pH 

Fig. I. Buffer index curves for a monoprotic  acid with C A = 
0.1 M and pK~ values of  7, 6, 5, 4, 3, 2.431 and 2. 
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T = CB (9) 
CA 

which has also been referred in the literature as a 
(Inczedy, 1976), 0 (Butler, 1964),f(Meites, 1981), 
degree of titration n (Waser, 1967) and degree of 
advancement of neutralization x (Covington et 
al., 1978). This parameter is very appropriate 
since that takes single normalised values at each 
titration step, e.g. before titration, T = 0, at the 
half point titration, T = 0.5, and at the equiva- 
lence point, T = 1. Taking into account Eqns. (5) 
and (9) we get 

K., 
T=. C B - ~  IH+I IH+I (10) 

CA CA l+  IH+  
K~ 

In those cases in which l o l l -  I and IH+[ are 
negligible in comparison with CA, the titration 
curve coincides with the dissociation curve, fo; 
that is, the fraction molar of the unprotonated 
species A 

Jo=lA 1= 1 ( l l )  
c ,  1 + l g + l  

K. 
The titration pH = fiT) equation is monotonous, 
i.e. it has no maximum or minimum points. The 
slope of the titration curve pH = fiT) or sharpness 
index indicates how strongly the sample resist a 
change of pH (Gonzfilez et al., 1990) and is 
positive throughout the whole titration; it never 
shifts sign, and is given by 

d p I t _  C____4A _ CA (12) 
dT dC8 n 

dpH 

Thus, the buffer index may be defined as the 
inverse slope of the titration curve provided the 
titrant is a strong acid or base and dilution effects 
are negligible. Plots of n versus pH may led to 
conclude erroneously that n approaches ~ at pH 
0 (or 14), or that for a certain pH region, n = 0. 
This may readily avoided in plotting (Olson et al., 
1977) log n against pH (Fig. 2). 

By differentiation of Eqn. (12) with respect to 
pH we obtain 
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Fig. 2. L o g a r i t h m  of  the n versus pH curves wi th  C A = 0.1 and  

pK~ values  of  7, 6, 5, 4, 3 and  2. 

As dpH/dT ~ 0, dZpH/dT : =  0 requires that dn/  
dpH = 0, and in this way, to each inflection point 
in the titration pH = fiT) curve corresponds a 
minimum or maximum value in the buffer index 
n = f(pH) curve of the H A / A -  system. 

The relative error for the titration of a weak 
acid with a strong base will be 

A T = T - l =  IOH I - IH+I  f ,  (14) 
C4 

where f~ is the molar fraction of the undissociated 
form HA (f0 + f ~ = l )  

I/-/+1 
Ko (15) 

f, - IH+I 
1 + - -  

K. 
The titration error may be calculated from Eqn. 
(14) provided that the concentration of acid CA, 
the acidity constant K a of the titrated acid, and 
the pH at the end point of the titration are 
known. 

4. Maximum and minima in the buffer index 
versus pH curve 

The buffer index n =  f(pH) curve of a 
monoprotic acid system has, in general, a central 
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(~ K~ ~ ,3 maximum (indicated as c in the following), and x ' 5 +  3X ' 4 -  CA--3 + - - I X  
two minima, one in the acid side, and the other in Ka/ 
the alkaline one (indicated as a and b, respec- (CA Kb~ ,2 3Kb , Kb=o 
tively, in the course of the paper), unless K,  (pK,) + \ ~ ,  + 1 - 3 ~ ) x  - ~ x - (18) 

is either too small (large) or too large (small). 
x' being the value of  x which satisfy the condition 
met, and Kb is the basicity constant of  A - ,  the 
conjugate base of the acid HA (Kb = ]HA] IOH-I 
/I A-l) .  Note that the acidity constant and the 
basicity constant of  a same acid/base pair hold 

4.1. The complete description 

Differentiation of Eqn. (7) gives the slope of the 
graph of  ~r as a function of pH 

"c In+] ( [H+I- l) 
d~r = l n  210 A K, \ K, _ I H + I  

( rH+l  3 dpH } 1 + ~-~--j  

+ [OH-[ (16) 

Fig. 3 shows aJ family of theoretical dzr/dpH 
against pH curves for varying values of pKg. 
Values of  dzc/dpH = 0 will locate the position of 
the maximum and minima in the rc versus pH 
curve. However, in order to make the treatment 
more convenient we introduce the auxiliary vari- 
able x 

x - ]H+] (17) 
X. 

dzc/dpH = 0 then requires 
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Fig. 3. Derivative n versus pH curves with C A = 0.1 and pK~ 
values of 7, 6, 5, 4, 3 and 2.431. 

K,~= KaKb (19) 

Equation (18) may be solved for various values of 
r 

CA 
r = - -  (20) 

K~ 

and Ka, i.e. by applying the Newton-Raphson 
(Valk6 and Vajda, 1989) method. 

In an analogous manner, the condition d~/ 
dpH = 0 with 

G 
y - [H+[ (21) 

leads to 

y ' 5 + 3 y ' 4  ( C A _ _  3 ga"~ , 3 - xb 
CA K.'~ ,2 1(. , K. 0 + 1-3 ]y -3 y (22) 

which may be solved for different values of Ka 
and s 

CA CAKa 
s - (23) 

Kb Kw 

4.2. The symmetrical (complete) description 

The condition for the complete buffer index 
curve to be symmetrical is given by r = s, K a - 
Kb = x/Kw (pKa = pKw/2). Then, from Eqn. (22) 
we get 

(y'-- 1)(y'4 +4y'3 +(6-- s)y'a +4y' + 1 ) = 0  
(24) 

The root Y'c = 1 correspond to the central maxi- 
mum, c, in the zr = f(pH) curve, and Eqn. (7) gives 
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Table 1 
Distance (in pH units) from the central maximum (pK~) to the acid or alkaline minimum for the symmetrical (complete) condition 
case 

r = s log x~ = - l o g  y{, p K a -  pH~ = pH~, -pKa r = s log x a = - l o g  y~, p K a - p H '  a = p H { , - p K  a 

107 3.4997 50 0.6871 
10 ~ 2.4972 27 0.4550 
103 1.4711 24 0.3977 

100 0.8961 16 0 

* Theoretical data in Tables were rounded off to 0.0001 for the sake of  comparison in spite of that this number of significant digits 
could not be obtained in any real situation 

[nm,x[pH=pKw/2 = In 10CA\ 4 CA /I 

The two lateral minima in this case are equidis- 
tant in pH from pKw/2, and are given by the roots 
of the four degree equation shown in the second 
parenthesis of Eqn. (24), which may be factored 
to 

( y ' Z + - ~ ) + 4 ( y ' + ~ 7 ) + 6 - s = O  (26) 

and making 

1 
Y' = y '  + -- (27) y '  

we get the following second degree equation 

y,2 + 4 Y' + 4 - s = 0 (28) 

which leads to 

[ y ' l a , b = ~ - - l + ~ ( ~ - ~ - -  1 ) 2 - - 1  (29)  

and so in order for Eqn. (29) to have a proper 
root 

=C~> 
s Kb -- 16 (30) 

When s takes the limiting value of 16, the two 
minima merge simultaneously with the maximum 
at pH = pK,  = pK~/2. The location of the pH 
axis of the minima for various values of s (r) when 
pK~ -- pKw/2 are given in Table 1. The maximum 
in n occurring at H ÷ ---x/Kw can vanish only if 
C A becomes zero, leaving the /rH2 0 = 7~ia q--rCOH 

curve. 

4.3. The acid side approximation: pH' 
calculations at the acid minimum and central 
maximum 

Calculations involving Eqns. (18) and (22) are 
cumbersome and involves the application of nu- 
merical methods; i.e. iterative techniques which 
may present convergence problems. It is highly 
desirable to introduce approximations which 
make more tractable the problem. 

Thus, for Ka > x/Kw(pKa < pKw/2) we may ne- 
glect IOH-I relative to [H + l, and then Eqns. (7) 
and (16), taking into account Eqns. (17) and (20) 
leads to 

 =ln 10(-  + x) xKo) 
1 ~-r (31) =lnlOCAx ( l + x )  2 

d. lo(.Cax : ) 
dp---H= ln2 \ (1 + x )  3 IH+l 

=ln21OCAx(-~ + x) ~) (32) 

From d n / d p H = 0 ,  a third degree equation 
(ao X'3 + al  x'2 + azx '  + a3 = 0) is obtained 

x '3 + 3x '2 + ( 3 -  r)x'+ 1 + r = 0  (33) 

This is equivalent to consider negligible the ratio 
Kb/K~ in Eqn. (18). The real positive roots (Niev- 
ergett, 1994), x'~ and x'c, of the third degree Eqn. 
(33) allows to calculate the acid minimum, pH'~, 
and the central maximum, pH'c, by taking loga- 
rithms in Eqn. (17) 

pH" = pK, - log x'a (34) 
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pHi = pK, - log x:  (35) 

By making x ' =  z ' - a ~ / 3 ,  Eqn. (33) is reduced 
(Uspensky, 1948) to the form z '3 + pz' + q = 0, 
with p = a2 - a~/3 = - r, q = 2 a~/27 - a2a~.,"3 + 
a 3 = 2r, and then 

z '3-  rz'+ 2r = 0 (36) 

The discriminant, d, of  Eqn. (35) is given by 

q 2 p 3 (  r ) 
A = ~ - + ~ = r  2 1 - ~  (37) 

I f d _ < 0 ,  then 

C,1 
r = -~- > 27 (38) 

K. 

pK, _>pCA + 1.4314 (39) 

Eqn. (33) having two positive roots (three real 
roots), corresponding to the minimum, a, on the 
acid side, and the central maximum, c, as we have 
indicated above. Note that logx '  measures the 
distance in pH units between the pH at the mini- 
mum of  the buffer index curve in the acid side, or 
the pH at the central maximum, and pK, ,  respec- 
tively, as shown in Table 2, for different values of  
r.For solving the third degree equation, the fol- 
lowing applies (p = - r ,  and q = 2r) 

P = ~ - 5 (40) 

Table 2 
Location of the central maximum and lateral acid or basic 
min imum in the buffer index curve for a monoprotic acid 

r l ogx / r  l o g x ~ = p K , , - p H ~ ,  logx'~.=pK~,-pH'~ 

= C A / K  a 

l 0  7 3.5000 3.4997 0 
105 2.5000 2.4972 0 
103 1.5000 1.4709 0.0035 
102 1.0000 0.8915 0.0380 
50 0.8495 0.6717 0.0858 
27 0.7157 0,3010 0.3010 

s log x//s log y~ = p H ~ - p K ,  log y~ = p H ~ - p K ~  

= CA/K b 

Table 3 
Values of  r and T'~ as a function of  the difference between pKa, 
and the central maximum pH'~ 

log x'~, = p K ~ -  pH',. x'~ r log r T', 

= CA/K a 

0.001 1.0023 3482.37 3.542 0.4991 
0.005 1.0116 702.95 2.847 0.4957 
0.010 1.0233 355.59 2.551 0.4914 
0.015 1.0351 239.86 2.380 0.4871 
0.020 1.0471 182.03 2.260 0.4827 

log y~ = p H ~ - p K ~  y~ s logs  T~ 

= C a / K  b 

.=arcos( ) = rcos( 

.j" = 2p j',3 cos - - k = 0, 1, 2 (42) 

and 

al  
x}= - ' - - - =  - ' -  1 (43) 

~J 3 -;  

with j = 1, 2, 3. 
The central maximum, pH;, does not strictly 

coincides with the pKa, lying at its left side, 
pH'~ _< pK,,  because of the self ionization equi- 
libria of  water and the magnitude of the difference 
increases as r decreases, that is to say, as the 
concentration of the acid decreases, and/or K a 
increases (pK~ decreases). Consequently it is un- 
true (except when x; = 1) that the buffer capacity 
is greatest at T = 0.5, that is in a solution contain- 
ing equal formal concentrations of  the weak acid 
and its conjugate base. 

Equation (33) on rearrangement leads to 

(x '  + 1)3 
r = -  (44) 

X ' - - I  

which allows to calculate the minimum permissi- 
ble value of r for a given distance (log x') between 
pK,  and the point of  minimum slope of the 
dpH/dT curve, where buffer index is at a maxi- 
mum (Table 3). I f  an acid of  10 2 M concentra- 
tion is being titrated, its pK~ value must be 
_>4.847 (4.551) in order to assure a difference 
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between the central maximum pH'c and the pK~ 
less than 0.005 (0.01) as can be deduced from the 
data in Table 3 (pK~ >__ pCA + log r). The T' val- 
ues were calculated by applying Eqn. (10) with 
O H -  < H  + 

1 x y_ 1 x 
r + ~ (45) 

l + x  r s l + x  r 

The maximum or minimum in zr are found by 
substituting in Eqn. (.31) for x'c (maximum) or x.~ 
(minimum), respectively. When pH = p K , ,  we 
have x = 1, and Eqn. (31) gives 

]rc[pH=p~a = In 10CA + r  (46) 

Though the maximum buffer capacity does not 
strictly coincides with the pH value equals to pK~, 
the quotient rr(pH = pH'c)/rc(pH = pK,) ~ 1 for 
r > 2 7 .  

The merging of the minimum with 7/Tma x as K a 
increases above K,  = x/Kw(PK, < pKw/2) occurs 
when d = 0, or r = 27; Eqn. (33) then gives x] = 
x~ = 2, and Eqn. (31) leads to 

[zrlr=ZT=21nlOC" (-i----~++ = l n l 0 C ,  

(47) 

Hence, both rCm~ and rrmi~ (acid) have increased 
with decreasing pK~ to this common value. As x 
approaches 2, the acid minimum a and the central 
maximum c are displayed towards each other and 
for x = 2 merge into one single maximum. This is 
well illustrated by the set of curves shown in Fig. 
1. 

4.4. The alkaline side approximation 

For Ka < x/Kw(pK, > pKw/2), H + < O H - ,  
and then, taking into account Eqns. (21) and (23), 
Eqns. (7) and (16) leads to analogous expressions 
as Eqns (31) and (32) 

rc=ln IOCAy +y)2 ~- (48) 

dTr ( y - - 1 3  1)  (49) 
dpH- ln2  IOCAYk( +Y) -s 

From the condition drc/dpH = 0 we get 

y,3 q_ 3y,2 q_ (3 -- s)y' + 1 + s = 0 (50) 

(this is equivalent to consider negligible the ratio 
K~/Kb in Eqn. (22)), from which we may calculate 
the pH corresponding to the central maximum, c, 
and the minima, b, in the alkaline side, by taking 
logarithms in Eqn. (21) 

pn '  c = pK, + log y',, (51) 

pH'b = pK, + log y ;  (52) 

The central maximum lies in this situation at the 
right side of pK a, pH'>_ pK,, because of the self- 
ionization equilibria of water. 

The corresponding titration fraction values, T', 
when necesary, are now evaluated by applying 
Eqn (10) with IOH-I > > I H+I 

1 +y_ 
T ~  (53) 

1 s 
l + -  

Y 
When pH = pKa, x = 1, and then 

]~IpH=p~:, In 10 4 + s  (54) 

The required condition for the merging of the 
maximum with the minimum in the alkaline side 
is now seen to be 

CA CAK, 
S l i  m - -  - -  - -  27 (55) Kb K., 

As K a decreases below Ka~fKw(PKa > pKw/2), 
Zrm~ x increases and moves to the right occurring at 
IH+I<  Ka(pH > pKa). Thus, the required condi- 
tion for the appearance of the end point inflection 
in the titration curve (at 25°C) is 

pK, < 12.5686 --pCA (56) 

4.5. Practical applications: the acetic' acid and 
boric acid systems as examples 

The possibilities for the analyst to solve various 
calculating problems have increased drastically 
with the development of programmable calcula- 
tors, e.g. it may be possible to handle rigorous 
formulations (Texas Instruments, 1992) without 
the tedium of manual solution of higher order 
equations. Either the five degree Eqns. (18) and 
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Table 4 
pH values corresponding to the minima (pH'. and pHi) and 
maximum buffer index (pH'¢) calculated by means of the 
five-degree equations (18) or (22): C A = 0.1 M in all cases 

pK~ pH'~ pH~ pHi. 

3 2.1086 2.9620 8.0022 
4 2.5291 3.9965 8.5002 
5 3.0088 4.9997 8.9999 
6 3.5028 6.0000 9.4997 
6.5 3.7515 6.5000 9.7495 
7 4.0009 7.0000 9.9991 
7.5 4.2505 7.5000 10.2485 
8 4.5003 8.0000 10.4972 
9 5.0000 9.0003 10.9912 

10 5.4998 10.0035 11.4709 
11 5.9978 11.0380 11.8915 

(22) applied to systems with C A --- 0.1 and varying 
PKa values ranging from 3 to 11 leads to the 
maximum and minima pH' values compiled in 
Table 4. 

As a matter of fact, when to approximate, 
Eqns. (33-35) may be applied to calculate the 
acid minima and the central maximum in thoses 
cases in which pKa < pKw/2. The basic maximum 
is then calculated from Eqns. (50) and (52). When 
pKa > pKw/2, the basic minimum and the central 
maximum are calculated from Eqns. (50-52), 
whereas the acid minimum is located by applying 
Eqns. (33) and (34). The same values were ob- 
tained by applying either the reduced third degree 
Eqns. (33) and (50) or the complete five degree 
Eqns. (18) and (22). Only at extreme dilutions, it 
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f 
. , , . , , ,  . . . . . . .  
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f . - ~ "  
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2 . . . . . . . .  ' . . . . . . . . . .  0 
0.5 1 1.5 2 

T 

Fig. 4. Titration curves for acetic acid (pK a = 4.75; I = 0.1) for 
CA concentrations of 10 -1, 10 -2, 10 -3  and 10 -4  M, and 
derivative curve in the later case. 

is necessary to apply the complete equation. 
The theory developed above has been applied 

to the titration of the acetic and boric acids, 
respectively. The molar fraction of the A -  species 
and the titration fraction of acid, calculated at 
each singular pH point (the two minima, a and b, 
and the maximum c, in the buffer index versus pH 
curve) are shown in Table 5. Remember that the 
points a (first), c (middle) and b (end) coincide 
with the inflection points in the titration pH = 
f(Y) curve. 

Figs. 4 and 5 show a family of titration curves 
for concentrations ranging from 10-~ M to 10 - 4  

Table 5 
Location of minima and maximum in the acetic acid (pK~ = 4.75; I = 0.1) and boric acid (pK a = 9.1; I = 0.1) systems 

CA fo.~ fo.c fo.b T~ T' c T{, pH' a pH'c pH{, 

Acetic acid/sodiumacetatesystem 
0.1 0.0135 0.4996 0.9999 0.0005 0.4995 1.0000 2.8869 4.7494 8.8749 
0.01 0.0442 0.4964 0.9998 0.0057 0.4946 1.0000 3.4147 4.7437 8.3748 
0.001 0.1623 0.4575 0.9992 0.0704 0.4364 1.0000 4.0371 4.6760 7.8743 
0.0005 0.2933 0.3704 0.9989 0.2076 0.3099 1.0000 4.3681 4.5196 7.7236 

Boric acid/sodiumborate system 
0.1 0.0001 0.5003 0.9886 - 0.5004 0.9996 5.0501 9.1004 11.0400 
0.01 0.0003 0.5025 0.9631 - 0.5038 0.9960 5.5502 9.1044 10.5171 
0.001 0.0009 0.5283 0.8694 - 0.5424 0.9533 6.0508 9.1492 9.9236 
0.0005 0.0013 0.5672 0.7926 - 0.6002 0.8888 6.2016 9.2175 9.6822 
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Fig. 5. Titration curves for boric acid (pKa = 9.1; I = 0.1) for 
C A concentrations of 10 -1, 10 2, 10-3 and 10 -4  M, and 
corresponding derivative curves. 

The end inflection point when occurs precedes 
to the equivalence point, the difference between 
both points being negligible if the acid is enough 
strong, but it increases as pKa and dilution in- 
creases, e.g. for boric acid 0.01 M the value of T 
at the inflection point is 0.996 ( -  0.4% relative 
error). 

Results obtained by Meites and Goldman 
(1963) for the titrations of 10-  1 M of weak acid 
of various strength, with 10 -~ M monoacid 
strong base taking into account dilution effects 
are shown in Table 6, together with the values 
obtained using the theory of this paper. As a 
conclusion, it is clear that the volume change 
during most titrations is such that the resulting 
dilution does not change the characteristic aspects 
of the titration curve. 

M, for acetic (pKa=4.75, I=0 .1 )  and boric 
(pKa=9.1,  I=0 .1 )  acids, respectively, obtained 
by applying Eqn. (10) by means of the reverse 
approach. The slope (obtained by combining 
Eqns. (16) and (12)) of the most unfavourable 
titration curve is also included in Fig. 4, whereas 
all the corresponding slope titration curves are 
included in Fig. 5 instead. 

5. pH values at the points of minima and 
maximum buffer index 

Simple expressions for the pH values at which 
the buffer index is maximum or minimum may be 
obtained by making some sort of approximations 
as shown in the following, thus obtaining well 
known textbooks expressions. The degree of ap- 
proximation are also evaluated in each case. 

Table 6 
Locations of the inflection points in weak acid-strong base titrations 

K. Half point inflection End-point Inflection 

Meites and Goldman* This paper Meites and Goldman* This paper 

0.1 No inflection - - 
0.02 0.065 
0.01 0.111 - - 
0.003 0.360 0.3684 - 
0.001 0.463 0.4672 
1"10 4 0.496 0.4970 - 
1"10 -5 0.499 0.4997 - 
1"10 -7 0.5000 0.5000 - 
1"10 -8 - 0.5000 0.9999 
1"10 -9 0.5005 0.5003 0.999 
1'10 -~° 0.506 0.5030 0.990 
1'10 -~t 0.573 0.5328 0.876 
5'10 -12 No inflection 0.5736 No inflection 

0.9997 
0.9970 
0.9641 
0.9183 

* Titration of 0.1 F monobasic weak acid with 0.1 F monoacidic strong base 



10 

5.1. Ac id  side m in imum 
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When pH < pK~ (but not too low), x = IH +[/ 
K~> > 1, and then, from Eqn.(32) with dz U 
dpH = 0 

- C ~ C  4 
x',* = x//r= ~ / ~  (57) 

By combining Eqns. (17) and (57) we obtain the 
pH value, pH'*, at the apparent minimum in ~z, 
sr~* 

'* ~ ' *x  x / c ~  (58) IH ,, = --a --,, = 

pn'.* = ½(pCA + pKo) (59) 

The deviation, April, from the minimum pHi, 
given by Eqn. (34) (third degree approximation is 
given by 

ApH' ,  = p H ' , *  - p H I ,  

= ½(pCA + p K , )  -- (pK,  -- log x~) 

= log xl, -- ½(PK~ - p C . , )  = log x', - log v.'r 
(6O) 

Its follows from the data compiled in the Table 2 
that phi*  < phi .  

The buffer capacity at the apparent acid mini- 
mum, pH',  takes the value (Eqn. (31) with x > > 
1) 

c -  ,) rc~,* = In lOGAN'* + r (61) 
\ X a  

and taking into account Eqn. (57) 

rri,* = 2 In 10 CA = 2 In IOx/ /CtK,  (62) 
~v/I r 

5.2. The alkaline side m in imum 

If the pH values are not too high but greater 
than pKa (basic minimum) y =  K , / H  + > > 1, 
and then dzc/dpH = 0 requires 

~/ ~ (63) 

and Eqns. (21) and (63) leads to the apparent 
basic minimum 

, ,  K .  C~K_~ IHh + ] = . ~  = ,. (64) 

pH'h* = ½(PK,, - pCA + pK,,.) (65) 

The deviation from the mimimum pHi> given by 
Eqn. (52), April, is equal to 

April ,  = pHi,* - pH't, 

1 K = ~(p , - p C  A +pK,, .)  - (logyh + p K , )  

= ½(pK, . -  (PCA +pK,,)) -- Iogy;  

= log x//s -- log y'/, (66) 

The data compiled in Table 2 indicates that 
pHb* > ph i .  

The buffer capacity at the apparent basic mini- 
mum takes the value (Eqn. (48) with y > > 1) 

~',,* = In 10GayS* ( ) , ) ~ _ + ~ )  (67) 

and taking into account Eqn. (63) 

cA lO ~ * = 2 1 n l 0 ~ = 2 1 n  ~ K. (68) 

5.3. The central  m a x i m u m  

In the middle range of the pH scale, the pH 
region where the buffer capacity of water is in- 
significant, we may neglect both IH + l a n d  ]OH- I 
in Eqn. (16), and d~/dpH = 0 requires 

xi* = y i * =  1 (69) 

and then, from Eqn. (17) 

tH + 1;~* -- K<, (70) 

pHi.* = pK,, (71 ) 

and taking into account Eqn. (35) the deviation 
from the minimum pH'c is given by 

ApH;. = pHi.* - pH;. = pK,, - (pK~ - log x',.) 

= log x',. (72) 

being A pH' c < 0.02 if r > 185. 
The buffer action, rCHA, is shown by means of a 

well-shaped curve with a maximum pH* at pK~ 
given by the well-known expression 

CAXI.* In 10 
sbt A = In 10 (1 + x'<,*) 2 4 CA (73) 
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Table 7 
Differences between the inflection points and the equivalence, half equivalence and pHv = 0 points, respectively, in the titration curve 

CA fO at T = 0  fo at T = 0 . 5  fo at T =  1.0 p H ~ - p H  o pH'~-pHo. ~ pH{, -pH~ o 

Acetic acid 

0.1 0.0132 0.5002 0.9999 0.0090 -0.0009 -0.0001 
0.01 0.0413 0.5018 0.9998 0.0305 -0.0094 -0.0005 
0.001 0.1248 0.5166 0.9993 0.1332 -0.1029 -0.0044 
0.0005 0.1716 0.5313 0.9990 0.3017 -0.2850 -0.0083 

Boric acid 
0.1 - 0.4999 0.9888 0.0002 -0.0076 
0.01 0.0003 0.4987 0.9651 0.0022 -0.0252 
0.001 0.0009 0.4880 0.8939 0.0005 0.0284 -0.1020 
0.0005 0.0012 0.4770 0.8534 0.0008 0.0776 0.1829 

The graph tends asymptotically to zero at high and 
low pH values (trivial solutions fo = 0 
and f, = 0). The function rqaA, the contribution 
of the rc curve characteristic of the weak acid 
itself has no minima to cause acid or basic 
end point inflection in the pH = f(T) titration 
curve. 

6. pH at the single normalised 0, 0.5 and 1.0 
values of  the fraction titrated 

Equation (10) on rearrangement gives the cubic 

IH + 13 + ( TC A + Ka)IH + ]2 

-(KaCA(1-T)+Kw)IH+[-K, ' K w = 0  (74) 

and taking into account Eqns. (17) and (21) we get, 
respectively, 

x 3 + (Tr + 1)x 2 r(1 - T) + K. -~. -- - -  x - -  = 0  

(75) 

- y3 - - ( s (1 -  T)+ l)y2+ Ts+--~b y + ~ = O  

(76) 

Equations (75) and (76) in combination with Eqn. 
(17) and (21), respectively, allow the calculation of 
the pHo, pHo.5 and pH,.o values corresponding to 
the points at which the fraction titrated T takes 
the single normalised values 0, 0.5 and 1.0. The 

for values and the pH~ - PHx differences (T = 0, 1, 
2; i = a, c, b) obtained for both the acetic acid and 
the boric acid systems are compiled in Table 7. 
Some conclusions follow. The initial pH value is 
always lower than the value of the minimum pH.~ 
in the acid side. The pHoz values lies to the right 
of the central maximum pH'c for pK~ < pKw/2, and 
to the left for pK, > pKw/2 values. However, for 
most analytical purposes (when solutions are no 
too  diluted) the value of pKa can be estimated with 
satisfactory accuracy from the pH value at T = 0.5, 
i.e. when approximately half of the acid has been 
titrated.'The minimum pHi, in the alkaline side, 
that is the inflexion end point, always precedes 
(when occurs) to the equivalence pH,.0 point. 

7. lnflexion points in the buffer index versus pH 
curves. 

By differentiating Eqn. (16) with respect to pH 

d2rc [CA[H+[ 1-~ [H+I2 4JH+[~ Ko / 
dpH2-1n 3 10 (l IY 

+ [H+I + IOH-]I (77) 

J 
and taking into account Eqn. (17) 
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d 2 1 r  I o ( C A x ( 1  + x 2 - 4x) 
d p H  2 = ln3 \ (i + ~ + [H+I By dividing throught a we get 

+low 0 
d2zr/dpH2 = 0 leads to a six-degree equation 

,,4 X"6 + 4X"5 + 6 + r + ~ ) x  

r + 4 - -  x +4(1 
+ 2 K b  ,, Kb 0 

+ ( K~]x"2 l+r+6Ka ] 

(78) 

(79) 

Although the inflection points are of doubtful 
interest themselves, we attempt to calculate them. 
However, in order to make more tractable the 
problem, we may neglect IOH-I with respect to 
I H +1 when pK,  < pKw/2, and then (Kb/Ka being 
negligible) 

x "4 + 4x "3 + (r + 6)x "2 + 4(1 - r) + 1 + r = 0 
(80) 

Exact roots of Eqn (80) may be obtained by the 
Ferrari's method (Uspensky, 1948) for various 
values of r as can be seen in Table 8. Two 
inflection points were obtained, one on the acid 
side, pHi, and the other in the alkaline direction, 
pH{;. Note that log x~ and log x~ denotes the 
distance in pH units between pKa and the acid, 
and basic inflection rc = f(pH) points, respectively. 
The necessary steps to calculate exact roots of 
four degree equations by the method of Ferrari 
are indicated in the following. Let the equation 

A x  4 + B x  3 + C x  2 + D x  + E = 0 (81) 

Table 8 
Distance (in pH units) between pK~ and the acid and basic 
inflection, respectively, for different r values with OH < < 
H + 

r log x~ log x; 

107 0.5719 --0.5719 
105 0.5718 --0.5719 
!03 0.5560 --0.5707 
10 z 0.4578 -0.5597 
50 0.3876 -0.5471 
27 0.3010 -0.5249 

x a + a x  3 + bx  2 n t- CX + d = 0 (82) 

Let Yo be a root of the auxiliar cubic equation 

y3 + by2 + (ac - 4d)y  - (d(a 2 - 4b) + c 2) = 0 
(83) 

Then the coefficients A, B and C are given by 
a 2 

A = ~- + b + Yo (84) 

B = ayo c (85) 

c=Y0 ~- - d (86) 

Making 

= (87) 

p = (88) 

we get for the exact roots of the four degree 
equation the following expressions 

_ + a 
x 1 = ~ ( - ( 2  c ~ ) ~ / ( ~ - 7 ) z - 4 ( 2 - f l )  ) 

(89) 

(90) 

x 3 = ~  - + ~ + ~ + ~  - 4  ~-+ ,8  

(91) 

= 1  a 2 

(92) 

In thoses cases in which IH +[and  IOH-I may 
be neglected, Eqn (78) reduces to 

dZrc CAx(1 + x 2 -- 4x) 
dpH2 - In 3 10 (1 + x) 4 (93) 

and dZ~r/dpH2 = 0 requires 

x"2 _ 4x" + 1 = 0 (94) 

and then 

x " =  2 ___ x/3 (95) 
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log x" = + 0.5719 (96) 

as shown recently by Asuero, 1992 in this journal. 

8. Conclusion 

Although the principles of potentiometric titra- 
tions are described in some detail in almost every 
modern textbook of analytical chemistry, some 
aspects concerning to relevant aspects of the 
buffer index behaviour have been frequently 
omited. However, the buffer index expressions are 
extremely useful in discussing the general nature 
of titration curves. At each maximum or mini- 
mum in the ~r versus pH curve corresponds an 
inflection point in the titration curve which re- 
quires CA < 27 Ka in the acid side, or CAKa > 27 
Kw in the alkaline one. On the other hand, the 
maximum buffer capacity does not strictly coin- 
cides with the pH value equals to pKa. Though it 
is assumed that there is no volume change this is 
in fact possible in some situation, e.g. the titrant 
may, for example, be assumed to be generated 
directly in the titration vessel. In any case, the 
volume change does not substantially affect the 
characteristic aspects of the titration curve. 
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